Insights into the Mechanism of Homeoviscous Adaptation to Low Temperature in Branched-Chain Fatty Acid-Containing Bacteria through Modeling FabH Kinetics from the Foodborne Pathogen Listeria monocytogenes

نویسندگان

  • Lauren P. Saunders
  • Suranjana Sen
  • Brian J. Wilkinson
  • Craig Gatto
چکیده

The psychrotolerant foodborne pathogen Listeria monocytogenes withstands the stress of low temperatures and can proliferate in refrigerated food. Bacteria adapt to growth at low temperatures by increasing the production of fatty acids that increase membrane fluidity. The mechanism of homeoviscous increases in unsaturated fatty acid amounts in bacteria that predominantly contain straight-chain fatty acids is relatively well understood. By contrast the analogous mechanism in branched-chain fatty acid-containing bacteria, such as L. monocytogenes, is poorly understood. L. monocytogenes grows at low temperatures by altering its membrane composition to increase membrane fluidity, primarily by decreasing the length of fatty acid chains and increasing the anteiso to iso fatty acid ratio. FabH, the initiator of fatty acid biosynthesis, has been identified as the primary determinant of membrane fatty acid composition, but the extent of this effect has not been quantified. In this study, previously determined FabH steady-state parameters and substrate concentrations were used to calculate expected fatty acid compositions at 30°C and 10°C. FabH substrates 2-methylbutyryl-CoA, isobutyryl-CoA, and isovaleryl-CoA produce the primary fatty acids in L. monocytogenes, i.e., anteiso-odd, iso-even, and iso-odd fatty acids, respectively. In vivo concentrations of CoA derivatives were measured, but not all were resolved completely. In this case, estimates were calculated from overall fatty acid composition and FabH steady-state parameters. These relative substrate concentrations were used to calculate the expected fatty acid compositions at 10°C. Our model predicted a higher level of anteiso lipids at 10°C than was observed, indicative of an additional step beyond FabH influencing fatty acid composition at low temperatures. The potential for control of low temperature growth by feeding compounds that result in the production of butyryl-CoA, the precursor of SCFAs that rigidify the membrane and are incompatible with growth at low temperatures, is recognized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures.

Listeria monocytogenes is a food-borne pathogen capable of growth at refrigeration temperatures. Membrane lipid fatty acids are major determinants of a sufficiently fluid membrane state to allow growth at low temperatures. L. monocytogenes was characterized by a fatty acid profile dominated to an unusual extent (> 95%) by branched-chain fatty acids, with the major fatty acids being anteiso-C15:...

متن کامل

Rapid quantitative detection of Listeria monocytogenes in chicken using direct and combined enrichment/qPCR method

Listeria monocytogenes is a species of foodborne pathogen often related to foods, such as poultry, ready-to-eat products, fruits, and vegetables. The culture method is a standard procedure for the detection of bacteria in food products. The real-time quantitative PCR (qPCR) technique can be used for the quantification of foodborne pathogens. The current research was aimed to assess...

متن کامل

CO2- and anaerobiosis-induced changes in physiology and gene expression of different Listeria monocytogenes strains.

Although carbon dioxide (CO(2)) is known to inhibit growth of most bacteria, very little is known about the cellular response. The food-borne pathogen Listeria monocytogenes is characterized by its ability to grow in high CO(2) concentrations at refrigeration temperatures. We examined the listerial responses of different strains to growth in air, 100% N(2), and 100% CO(2). The CO(2)-induced cha...

متن کامل

Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase.

Branched-chain fatty acids (BCFAs) typically constitute more than 90 % of the fatty acids of Listeria monocytogenes. The authors have previously described two Tn917-induced, cold-sensitive, BCFA-deficient (<40 %) L. monocytogenes mutants (cld-1 and cld-2) with lowered membrane fluidity. Sequence analyses revealed that Tn917 was inserted into different genes of the branched-chain alpha-keto acid...

متن کامل

Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes.

The fatty acid composition of Listeria monocytogenes Scott A was determined by close-interval sampling over the entire biokinetic temperature range. There was a high degree of variation in the percentage of branched-chain fatty acids at any given temperature. The percentage of branched C17 components increased with growth temperature in a linear manner. However, the percentages of iso-C15:0 (i1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016